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Abstract
Recently, manifold regularized semi-supervised learning (MRSSL) received considerable attention, because it successfully exploits the
geometry of the intrinsic data probability distribution to leverage the performance of a learning model. As a natural nonlinear general-
ization of graph Laplacian, p-Laplacian has been proved having the rich theoretical foundations to better preserve the local structure.
However, it is difficult to determine the fitting graph p-Lapalcian, i.e., the parameter p, which is a critical factor for the performance of
graph p-Laplacian. Therefore, we develop an ensemble p-Laplacian regularization (EpLapR) to fully approximate the intrinsic manifold
of the data distribution. EpLapR incorporates multiple graphs into a regularization term in order to sufficiently explore the complemen-
tation of graph p-Laplacian. Specifically, we construct a fused graph by introducing an optimization approach to assign suitable weights
on different p value graphs. And then, we conduct semi-supervised learning framework on the fused graph. Extensive experiments on
UC-Merced dataset and Scene 15 dataset demonstrate the effectiveness and efficiency of the proposed method.

Keywords Manifold regularization . Semi-supervised learning . Ensemble p-Laplacian regularization

Introduction

With rapid advances in storage devices and mobile networks,
large-scale multimedia data have become available to ordinary
users. However, in practical applications, e.g., human action
recognition [19, 20], scene classification [21], text categoriza-
tion [1], and video annotation and retrieval [2], the labeled
samples are always insufficient, though vast amounts of unla-
beled samples are readily accessible and provide auxiliary
information. Semi-supervised learning (SSL) aiming to ex-
ploit both labeled data and unlabeled data is designed to ad-
dress such problem. In SSL [3–8], it is assumed that nearby
samples are likely to share the same label. The manifold reg-
ularization [9] is one of the most representative works, which
assumes that the geometry of the intrinsic data probability
distribution is supported on the low-dimensional manifold.

In order to build better classifiers, the typical MRSSL al-
gorithms exploit the intrinsic geometry of the labeled and

unlabeled samples, then naturally captured by a graph.
Therefore, researchers paid their attention to build a good
graph to capture the essential data structure. Laplacian regu-
larization (LapR) [9, 17] is one prominent manifold regulari-
zation based SSL algorithm, which explores the geometry of
the probability distribution by using the graph Laplacian.
LapR-based SSL algorithms have been widely used in many
applications. Luo et al. [23] employed manifold regularization
to smooth the functions along the data manifold for multitask
learning. Hu et al. [22] introduced graph Laplacian regulari-
zation for joint denoising and superresolution of generalized
piecewise smooth images. Jiang et al. [24] presented a multi-
manifold method for recognition by exploring the local geo-
metric structure of samples. Another relatively new prior is the
Hessian regularization (HesR), which has been shown empir-
ically to perform well in a wide range of inverse problems
[10–12]. In comparison with LapR, HesR steers the values
of function varying linearly in reference to the geodesic dis-
tance. In result, HesR can be more accurate to describe the
underlying manifold of data. However, Hessian estimation
will be inaccurate, while it has poor quality of the local fit
for each data point [14]. The p-Laplacian [15] [16] is nonlinear
generalization of general graph Laplacian and has tighter
isoperimetric inequality. In particular, Bühler et al. [13] pro-
vided a rigorous proof of the approximation of the second
eigenvector of p-Laplacian to the Cheeger cut, which indicates
the superiority of graph p-Laplacian in local geometry
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exploiting. An efficient approximation method of graph p-
Laplacian has been proposed in [30]. However, the parameter
p of graph p-Laplacian is difficult to determine.

In manifold regularized SSL, the manifold is determined by
the graph with the predefined hyperparameters. Unfortunately,
it cannot define an objective function to choose graph
hyperparameters for intrinsic manifold estimation. In general,
the cross-validation [25] has been widely utilized for parameter
selection. But, to the best of our knowledge, this method that
selects parameters in a discrete and limited parameter space
lacks the ability to approximate the optimal solution tries.
Furthermore, the performance of the classification model is
weakly relevant to the difference between the intrinsic and ap-
proximated manifolds. Thus, the pure cross-validation-based
parameter selection cannot perform well on model learning.
An automatic and full approximation of the intrinsic manifold
of the data distribution will be valuable for the SSL methods.

In this paper, we propose an ensemble p-Laplacian regular-
ized method, which combines a series of graphs p-Laplacian.
By a conditionally optimal way, the proposed method learns to
assign suitable weights on graphs and finally construct an opti-
mal fused graph. The fused graph can sufficiently approximate
the intrinsic manifold by the complementation of graphs p-
Laplacian. We build the graph-regularized classifiers, including
support vector machines (SVM) and kernel least squares (KLS)
as special cases for scene image recognition. Experiments on
the UC-Merced dataset [27] and Scene 15 dataset [34] validate

the effect of proposed method compared with the popular algo-
rithms, including Laplacian regularization (LapR), Hessian reg-
ularization (HLapR), and p-Laplacian regularization (pLapR).

The rest of the paper is organized as follows. BRelated
Work^ briefly reviews related work on manifold regulariza-
tion and p-Laplacian learning. BMethod^ proposes EpLapR.
BExample Algorithms^ presents the EpLapR for KLS and
SVM. BExperiments^ provides the experimental results and
analysis on UC-Merced dataset and Scene 15 dataset. Finally,
BConclusion^ gives the conclusions.

Related Work

The proposed EpLapR is motivated by MRSSL and p-
Laplacian learning. This section briefly describes the related
works for better understanding.

Manifold Regularization

Suppose, the labeled samples are (x, y) pairs drawn from a
probability distribution P, and unlabeled samples x are drawn
according to the marginal distribution Px of P. It assumes that
the probability distribution of data is supported on a
submanifold of the ambient space. In general, the manifold
regularization defines a similarity graph over labeled and un-
labeled examples and incorporates it as an additional regular-
ization term. Hence, the manifold regularization framework
has two regularization terms: one controlling the complexity
measures in an appropriately chosen Reproducing Kernel
Hilbert Space (RKHS) and the other controlling the additional
information about the geometric structure of the marginal. The
objective function of the framework is defined as:

Fig. 1 The framework of EpLapR for remote sensing image classification

Table 1 Iterative solution method for EpLapR

Step1: initialize μk ∈RN.
Step2: update α according to Eq. (21).
Step3: based on the updated α, re-calculate μk according to Eq. (22)
Step4: repeat from step 2 until convergence.
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f * ¼ argmin
fϵΗΚ

1

l
∑
l

i¼1
V xi; yi; fð Þ þ ΥA fk k2K þ Υ I fk k2I ð1Þ

where V is a loss function, such as the hinge loss function

max[0, 1 − yif(xi)] for SVM. ∥ f ∥2
K is used to control the com-

plexity of the classification model, while fk k2I is an appropri-
ate penalty term, which is approximated by the graph matrix
(e.g., graph Laplacian L, L =D −W, where Wij is the weight
vector, the diagonal matrix D is given by Dii ¼ ∑n

j¼1W ij ) and

the function prediction. The parameters ΥA and ΥI control the
complexity of the function in the ambient space and the in-
trinsic geometry, respectively.

p-Laplacian Regularization

As a nonlinear generalization of the standard graph Laplacian,
graph p-Laplacian has the superiority on local structure
preserving.

As we all know, the standard graph Laplacian Δ2 can be
defined as the operator by inducing the following quadratic
form for a function f

f ;Δ2 fh i ¼ 1=2 ∑
i; j∈V

wij f i− f j

� �2
ð2Þ

Fig. 2 Some example images of UC-Merced dataset. The dataset totally has 21 remote sensing categories

Fig. 3 Some example images of Scene 15 dataset. The dataset totally has 15 scene classes
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where the vertices V represent the points in the feature space,
and the positive edge weights wij encode the similarity of
points (i, j).

Similar to the graph Laplacian [13], the unnormalized p-
Laplacian Δp (for p > 1) can be defined by:

f ;Δp f
� � ¼ 1=2 ∑

i; j∈V
wij f i− f j

� �p
ð3Þ

or

Δp f
� �

i
¼ ∑

j∈V
wijϕp f i− f j

� �
ð4Þ

where ϕp is defined as ϕp(x) = |x|p − 1sig(x). With p = 2, the
p-Laplacian becomes the standard graph Laplacian.

Bühler and Hein [13] used the graph p-Laplacian for spec-
tral clustering and demonstrated the relationship between the
second eigenvalue of the graph p-Laplacian and the optimal
Cheeger cut as follows: for value p > 1,

RCC≤RCC*≤p max
i∈V di

� 	p−1
p

RCC
1
p ð5Þ

or

NCC≤NCC*≤pNCC
1
p ð6Þ

where RCC∗ and NCC∗ are the ratio/normalized Cheeger cut
values obtained by tresholding the second eigenvector of the

unnormalized/normalized p-Laplacian; di is the degree of ver-
tex i; RCC and NCC are the optimal ratio/normalized Cheeger
cut values. This proves that in the limit as p→ 1, the cut found
by thresholding the second eigenvector of the graph p-
Laplacian converges to the optimal Cheeger cut.

In mathematic community, discrete p-Laplacian has been
studied in a general regularization framework. In [28], the
objective function of a general discrete p-Laplacian regulari-
zation framework can be computed as follows:

f * ¼ argminf∈H Vð Þ Sp fð Þ þ μ f −yk k2
n o

ð7Þ

where Sp fð Þ∶ ¼ 1
2 ∑
v∈V

∇v fk kp is the p-Dirichlet form of the

function f; μ is a parameter balancing the two competing
terms; y ∈ {−1, 0, 1} depends on labels of vertex v.

In [26], Luo et al. proposed full eigenvector analysis of p-
Laplacian and obtained a natural global embedding for multi-
class clustering problems, the whole eigenvector analysis of p-
Laplacian was achieved by an efficient gradient descend op-
timization approach as:

min
F JE Fð Þ ¼ ∑

k

∑ijwij f ki − f
k
j




 


p
∥ f k∥p

p

s:t: F TF ¼ I ð8Þ

where wij is the edge weight; fk is an eigenvector of p-
Laplacian; F ¼ f 1; f 2;⋯; f n

� �
are whole eigenvectors.

Fig. 4 Performance of mAP with
different p values on validation
set of UC-Merced dataset

Fig. 5 Performance of mAP with
different p values on validation
set of Scene 15 dataset
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Liu et al. [29] proposed p-Laplacian regularized sparse
coding for human activity recognition.

Liu et al. [30] illustrated the differences of semi-supervised
regression by using LapR, HesR, and pLapR for fitting two
points on the 1-D spiral. The results show the pLapR can fit
the data exactly and extrapolates smoothly to unseen data with
the geodesic distance. Specially, they proposed an efficient
approximation method of graph p-Laplacian and built p-
Laplacian regularization framework.

Ma et al. [31] presented an efficient and effective
approximation algorithm of hypergraph p-Laplacian and
then proposed hypergraph p-Laplacian regularization
(HpLapR) to preserve the geometry of the probability
distribution.

Method

The proposed EpLapR approximates the manifold of the data
distribution by fusing a set of graph p-Laplacian. First, we
show the fully approximation of the graph p-Laplacian.
Then, we propose the EpLapR.

Approximation of Graph p-Laplacian

We approximate the graph p-Laplacian (Lp) by the fully anal-
ysis of the eigenvalues and eigenvectors. In [13], the compu-
tation of eigenvalue and the corresponding eigenvector on
nonlinear operator Δw

p can be solved by the theorem:

The functionalFp has a critical point at f if and only if f is an
eigenvector of Δw

p ; the corresponding eigenvalue λp is given

by λp = Fp( f ). The definition of Fp is given as:

Fp fð Þ ¼ ∑ijwij f i− f j



 

p
2∥ f ∥p

p

ð9Þ

where

∥ f ∥p
p ¼ ∑i f ij jp:

The above theorem serves as the foundational analysis of
eigenvectors and eigenvalues. Moreover, we have Fp(αf) =
Fp( f ) for all real value α.

Suppose that the graph p-Laplacian has n eigenvectors (f∗1,
f∗2, ⋯, f∗n) associated with unique eigenvalues

λ*
1;λ

*
2;⋯;λ*

n

� �
. According to the above theorem, if we want

Fig. 6 mAP performance of
different algorithms on KLS
method of UC-Merced dataset
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to get all eigenvectors and eigenvalues of graph p-Laplacian,
we have to find all critical points of the functional Fp.
Therefore, we exploit the full eigenvectors space by solving
local solution of the following minimization problem:

min
F J Fð Þ ¼ ∑

k
Fp f k
� �

s:t: ∑
i
ϕp f ki
� �

ϕp f li
� � ¼ 0; k≠lð10Þ

where F ¼ f 1; f 2;⋯; f n
� �

.
Rewrite the optimization problem (10), we analyze the full

eigenvectors by solving the following graph p-Laplacian em-
bedding problem:

min
F JE Fð Þ ¼ ∑

k

∑ijwij f ki − f
k
j




 


p
∥ f k∥p

p

s:t: F TF ¼ I ð11Þ

The gradient of JE with respect to f ki yields the following
equation:

∂JE
∂ f ki

¼ 1

∥ f k∥p
p

∑ jwijϕp f ki − f
k
j

� �
−
ϕp f ki
� �

∥ f k∥p
p

" #
ð12Þ

The problem (11) can be solved with the gradient descend
optimization. However, if we simply use the gradient descend
approach, the solution fk might not be orthogonal [26]. So, the
gradient is modified in Eq. (13) in order to enforce the orthog-
onality.

G ¼ ∂JE
∂F −F ∂JE

∂F
� 	T

F ð13Þ

Meanwhile, the full eigenvalue λ = (λ1, λ2,⋯, λn) can be

computed by λk ¼ ∑ijwij f ki − f
k
jj jp

∥ f k∥p
p

. Finally, the approximate Lp

can be computed by Lp ¼ FλF T. We summarize the approx-
imation of graph p-Laplacian in Algorithm 1. In the algorithm,

the step length α is set to be α ¼ 0:01 ∑ik F ikj j
∑ik Gikj j .

We can get that if F TF ¼ I , then using the simple
gradient descend approach can guarantee to give a fea-
sible solution. Since Laplacian L is symmetric, we have

FTF ¼ I for initialization, and from Algorithm 1, we

have F tþ1 ¼ F t−αG, thus, F tþ1
� �TF tþ1 ¼ F t−αGð ÞT

F t−αGð Þ ¼ F tð ÞTF t−η GTF t þ F tð ÞTG
h i

. Here,

Fig. 7 mAP performance of
different algorithms on SVM
method of UC-Merced dataset
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GTF t þ F tð ÞTG

¼ ∂JE
∂F −F ∂JE

∂F
� 	T

F
 !T

F t þ F tð ÞT ∂JE
∂F −F ∂JE

∂F
� 	T

F
" #

¼ ∂JE
∂F

� 	T

F t− F tð ÞT ∂JE
∂F −

∂JE
∂F

� 	T

F t þ F tð ÞT ∂JE
∂F ¼ 0

So F tþ1
� �TF tþ1 ¼ F tð ÞTF t ¼ I. The orthogonality of

solution F is enhanced by G, and solution F is the feasible
solution.

Assume the tth iteration JE F tð Þ and (t − 1)th iteration

JE F t−1� �
. For this degenerated problem, we have

JE F tð Þ ¼ JE F t−1−αG
� �

≤ JE F t−1� �
. S i n c e JE Fð Þ≥0,

thus, our algorithm is guaranteed to converge.

EpLapR

Consider the MRSSL setting, where two sets of samples X are

available, i.e., l labeled samples xi; yið Þf gli¼1 and u unlabeled

samples x j
� �� �lþu

j¼lþ1, for a total of n = l + u samples. Class

labels are given in Y ¼ yif gli¼1, where yi ∈ {±1}. Typically,
l ≪ u and we focus on predicting the labels of unseen
examples.

According to the manifold regularization framework, the
proposed EpLapR can be written as the following optimiza-
tion problem:

f * ¼ argmin
fϵΗΚ

1

l
∑
l

i¼1
V xi; yi; fð Þ þ ΥA fk k2K þ Υ I

n2
fTL f ð14Þ

Here, f is given as f = [f(x1), f(x2),⋯, f(xl + u)]
T, L is the

optimal fused graph with L ¼ ∑
m

k¼1
μkL

p
k, s:t: ∑

m

k¼1
μk ¼ 1;μk≥

0; for k ¼ 1;⋯;m. Where we define a set of candidate graph
p-Laplacian C ¼ Lp1;⋯; Lpm

� �
and denote the convex hull of

set A as: conv A = {ψ1x1 +⋯ +ψmxm|ψ1 +⋯ +ψm = 1, xi ∈
A, ψi ≥ 0, i = 1,⋯, m}, where A = {x1,⋯, xm} . Therefore, we
have L ∈ convC , where convC ¼ μ1L

p
1 þ⋯þ μmL

p
mj

�
μ1 þ⋯þ μm ¼ 1; Lpi ∈C;μi≥0; i ¼ 1;⋯;mg .

Fig. 8 AP performance of
different KLS methods on several
classes of UC-Merced dataset
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To avoid the parameter μk overfitting to one graph [18], we
make a relaxation by changing μk to μγ

k and obtain the opti-
mization problem as:

f * ¼ argmin
fεHK

1

l
∑l

i¼1V xi; yi; fð Þ þ ΥA fk k2K þ Υ I

n2
fT ∑m

k¼1μ
γ
kL

p
k

� �
fs:t: ∑

m

k¼1
μk

¼ 1; μk≥0; for k ¼ 1;⋯;m

ð15Þ

Next, we present theoretical analysis for EpLapR.

Theorem 1: For L ∈ convC, the solution of the problem (15)
exists and admits the following representation:

f * xð Þ ¼ ∑
lþu

i¼1
α*
i K xi; xð Þ ð16Þ

which is an expansion in terms of the labeled and unlabeled
examples. Where the kernel matrix K with Kij = K(xi, xj) is
symmetric positive definite; α∗ is the coefficient.

The represented theorem shows that the solution of Eq.
(15) exists and has the general form of Eq. (16) under a fixed
μ.

So, we rewrite the objective function as

f * ¼ argmin
fεHK

1

l
∑l

i¼1V xi; yi; fð Þ þ ΥA fk k2K

þΥ I

n2
αTK ∑m

k¼1μ
γ
kL

p
k

� �
Kαs:t:∑m

k¼1μk ¼ 1; μk≥0; for k ¼ 1;⋯;m

ð17Þ

Example Algorithms

Generally, the proposed EpLapR can be applied to variant
MRSSL-based applications with different choices of loss
function V(xi, yi, f). In this section, we apply EpLapR to KLS
and SVM.

EpLapR Kernel Least Squares (EpLapKLS)

By employing the least square loss in optimization problem
(14), we can present the EpLapKLS model defined in Eq. (18)
as follows:

Fig. 9 AP performance of
different SVM methods on
several classes of UC-Merced
dataset
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f * ¼ argmin
fεHK

1

l
∑l

i¼1V yi− f xið Þð Þ2 þ ΥAα
TKα

þΥ I

n2
αTK ∑m

k¼1μ
γ
kL

p
k

� �
Kαs:t:∑m

k¼1μk ¼ 1; μk≥0; for k ¼ 1;⋯;m

ð18Þ

Then, we obtain the partial derivative of the objective func-
tion with respect to μk and α as follows:

∂f
∂μk

¼ Υ I

n2
αTK γμk

γ−1� �
LpkKα ð19Þ

∂f
∂α

¼ 1

l
Y−JKαð ÞT −JKð Þ þ ΥAK þ Υ I

n2
KLK

� 	
α ð20Þ

Here, we adopt a process that iteratively updates α and μk
to minimize f∗. Firstly, when μk is fixed, Eq. (20) turns to
argminμk

f , from which we can derive that

α* ¼ JK þ ΥAlI þ Υ Il
n2

LK
� 	−1

Y ð21Þ

where I is n ∗ n diagonal matrix; J is an n ∗ n diagonal matrix
with the labeled points diagonal entries as 1 and the rest 0; Y is an
n dimensional label vector given by Y = diag(y1, … , yl, 0,⋯, 0).

Given fixed α, we obtain the solution of μk with

s:t: ∑
m

k¼1
μk ¼ 1:

μk ¼
n2

Υ IαTKLpkKα

� � 1
γ−1

∑
m

k¼1

n2
Υ IαTKLpkKα

� � 1
γ−1

ð22Þ

The iterative solution procedure of EpLapR is described in
Table 1.

Now, we prove the convergence of this iterative solution.
Intuitively, the update criteria in Eq. (22) tend to assign larger

value to μk with smaller Υ I
n2α

TKLpkKα. Denoted by αt and μt,
the values of α and μ in tth iteration of the process, we have
f(αt, μt + 1 ) ≤ f(αt, μt ), and according to Eq. (21), the solution
of α is updated to minimize f; thus, we can get f(αt + 1, μt +
1 ) ≤ f(αt, μt + 1 ). Therefore, f(αt + 1, μt + 1 ) ≤ f(αt, μt + 1 ) ≤
f(αt, μt ).

Fig. 10 mAP performance of
different algorithms on KLS
method of Scene 15 dataset
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EpLapR Support Vector Machines (EpLapSVM)

The EpLapSVM solves the optimization problem (17) with
the hinge loss function as

f *ð Þ ¼ argmin
fϵΗΚ

1

l
∑
l

i¼1
1−yi f xið Þð Þþ þ ΥAα

TKα

þ Υ I

n2
αTK ∑

m

k¼1
μγ
kL

p
k

� 	
Kα ð23Þ

The partial derivative of the objective function with respect
to μk is same as Eq. (19).

Introducing Lagrange multiplier method with βi and ηi and
add an unregularized bias term b, we arrive at a convex dif-
ferentiable objective function:

L α; ξ; b;β; ηð Þ ¼ 1

l
∑l

i¼1ξi þ
1

2
αT 2ΥAK þ 2

ΥA

n2
K ∑

m

k¼1
μγ
kL

p
k

� 	
K

� 	
α

− ∑
l

i¼1
βi yi ∑

lþu

j¼1
α jK xi; x j

� �þ b

 !
−1þ ξi

 !
− ∑

l

i¼1
ηiξi

We reduce the Lagrangian using ∂L
∂b ¼ 0 and ∂L

∂ξi
¼ 0 and

take partial derivative with respect to α

α* ¼ 2ΥAI þ 2
Υ I

n2
LK

� 	−1

JTYβ* ð24Þ

where I is l ∗ l diagonal matrix; J is an l ∗ n diagonal matrix
given by J = [I, 0]; Y is an l dimensional label vector given by:
Y = diag(y1, … , yl). β

∗ is the n-dimensional variable given by

β* ¼ max
β∈ℝl

∑
l

i¼1
βi−

1

2
βTQβ subject to : ∑

l

i¼1
βiyi

¼ 00≤βi≤
1

l
; i ¼ 1;⋯; l

where

Q ¼ YJK 2ΥAI þ 2
Υ I

n2
LK

� 	−1

JTY

Then, the problem (23) can also be solved by the iterative
solution process in Table 1.

Fig. 11. mAP performance of
different algorithms on SVM
method of Scene 15 dataset
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Experiments

In this section, to evaluate the effectiveness of the proposed
EpLapR, we compare EpLapR with other local structure pre-
serving algorithms including LapR, HesR, and pLapR on UC-
Merced database and Scene 15 dataset. We apply the SVM
and KLS for image classification. Figure 1 illustrates the
framework of EpLapR for UC-Merced dataset.

UC-Merced dataset [27] consists of 2100 remote sens-
ing images collected from aerial orthoimage with the pixel
resolution of 1 ft. The original images were downloaded
from the United States Geological Survey National Map
of different U.S. regions. There are totally 21 classes,
including chaparral, dense residential, medium residential,
sparse residential, forest, freeway, agricultural, airplane,
baseball diamond, mobile home park, overpass, parking
lot, river, runway, beach, buildings, golf course, harbor,
intersection, storage tanks, and tennis courts (see in
Fig. 2). It is worth noticing that this dataset has some
highly overlapped classes, e.g., sparse residential,
medium-density residential, and dense residential; so, it
is difficult to get a successful classification.

Scene 15 dataset is composed of 15 scene categories, totally
4485 images. Each class has 200 to 400 images. The images
contain indoor scenes and outdoor scenes, such as living room,
kitchen, forest, mountain, and tall building (see in Fig. 3).

In our experiments, we extract high-level visual features
using the deep convolution neural network (CNN) [32] for
UC-Merced dataset and extract SIFT feature for Scene 15
dataset. For UC-Merced dataset, we randomly choose 50 im-
ages per class as training samples and the rest as testing sam-
ples. For Scene 15 dataset, 100 images per class are randomly
selected as the training data, and the rest for testing. In semi-
supervised classification experiments, in particular, we select
10, 20, 30, and 50% samples of training data as labeled data,
and the rest as unlabeled data. To avoid any bias introduced by
the random partition of samples, the process is repeated five
times independently.

We conduct the experiments on the dataset to choose suit-
able model parameters. The regularization parameters γA and
γI are selected from the candidate set {10i| i = − 10, − 9, − 8,
⋯, 10} through cross-validation. For pLapR, the parameter p
is chosen from {1, 1.1, 1.2,⋯, 3} through cross-validation
with 10% labeled samples on the training data. Figures 4

Fig. 12 AP performance of
different KLS methods on several
classes of Scene 15 dataset
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and 5 illustrate the mAP performance of pLapR on the vali-
dation set when p varies. The x axis is the parameter p, and the
y axis is mAP for performance measure. From Fig. 4, we can
see that, for UC-Merced data set, the best mAP performance
for pLapR can be obtained when p = 2.8. Figure 5 is the per-
formance of the Scene 15 database, and the best performance
is achieved when p is equal to 1. For EpLapR, we created two
graph p-Laplacian sets on UC-Merced dataset. For the first set
(EpLapR-3G), we choose p = {2.5, 2.7,2.8}, which led to
three graphs. For another one (EpLapR-5G), with five graphs
where p = {2.4, 2.5, 2.6, 2.7,2.8}. For Scene 15 dataset, the
parameters p of EpLapR-3G is {1, 1.4, 2.1}, and the p of
EpLapR-5G is {1, 1.1, 1.4, 2, 2.1}. We verify classification
performance by average precision (AP) performance for sin-
gle class and mean average precision (mAP) [33] for overall
classes. The AP is defined as the mean precision at a set of 11
equally spaced recall levels and can be expressed as follows:

AP ¼ 1

11
∑
t

max
r ≥ t

pre rð Þ

 �

; t∈ 0; 0:1; 0:2;⋯; 1:0f g

where pre(r) is the precision at recall r. The mAP is the mean
AP over all image classes and can be written as:

mAP ¼
∑
c

i¼1
APi

c

where c is the number of image classes.
We compare our proposed EpLapR with the representative

LapR, HesR and pLapR. Figures 6 and 7 demonstrate the
mAP results of different algorithms on KLS methods and
SVM methods on UC-Merced data set, respectively.
Figures 8 and 9 show the mAP performance on Scene 15
dataset. We can see that in most cases, the EpLapR outper-
forms LapR, HesR, and pLapR, which shows the advantages
of EpLapR in local structure of preserving.

To evaluate the effectiveness of EpLapR for single class,
Figs. 10 and 11 show the AP results of different methods on
several selected remote sensing classes, including medium
residential, parking lot, sparse residential, and tennis court of
UC-Merced dataset. Figure 8 reveals the KLS method, while
Fig. 9 represents the SVM method. Figures 12 and 13 show
the AP results of Scene 15 dataset about several classes, in-
cluding mountain, open country, tall building, and industrial.
We can find that EpLapR performs better than LapR, HesR,
and pLapR by sufficiently explore the complementation of

Fig. 13 AP performance of
different SVM methods on
several classes of Scene 15
dataset
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graph p-Laplacian. Moreover, what we can note is that the
classification results are not always improved with a larger
proportion of labels or a fused graph of much more graph p-
Laplacian. These observations suggest that it is critical to se-
lect parameters for our proposed method.

Conclusion

As a nonlinear generalization of graph Laplacian, the p-
Laplacian regularization precisely exploits the geometry of
the probability distribution to leverage the learning perfor-
mance. However, in practical, it is difficult to determine the
optimal graph p-Lapalcian because the parameter p usually is
chosen by cross-validation method, which lacks the ability to
approximate the optimal solution. Therefore, we propose an
ensemble p-Laplacian regularization to better approximate the
geometry of the data distribution. EpLapR incorporates mul-
tiple graphs into a fused graph by an optimization approach to
assign suitable weights on different p value graphs. And then,
we introduce the optimal fused graph as a regularizer for SSL.
Finally, we construct the ensemble graph p-Laplacian regular-
ized classifiers, including EpLapKLS and EpLapSVM for
scene image recognition. Experimental results on the UC-
Merced dataset show that our proposed EpLapR learner can
generalize well than traditional ones.
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